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SUMMARY

A computational scheme using the Chimera grid method is presented for simulation of three-dimensional
motion and aggregation of two red blood cells (RBCs) in a narrow tube. The cells are modelled as
rigid ellipsoidal particles; the computational scheme is applicable to deformable fluid-filled particles.
Attractive energy between two RBCs is modelled by a depletion interaction theory and used for simulating
aggregation of two cells. Through the simulation, we show that the Chimera grid method is applicable
to the simulation of three-dimensional motion and aggregation of multiple RBCs in a microvessel and
microvascular network. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Microvessels, particularly arterioles and venules, are the major site of blood flow regulation [1].
Blood in the microcirculation exhibits non-Newtonian behaviour. Since blood contains about
45% red blood cells (RBCs) by volume, as well as platelets and leucocytes, the interactions of
these formed elements play a crucial role in determining blood characteristics. Because of their
large volume fraction and their aggregation capacity, RBCs are the most important determinant
of blood flow characteristics. The level of RBC aggregability is reported to increase in disease
states such as diabetes mellitus, myocardial infarction and renal disease [2, 3]. Furthermore, aging
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of RBCs affects the aggregation. For instance, the aggregability of old RBCs is reported to be
200% higher than that of young RBCs [3], and neonatal RBCs show reduced aggregation [4].

In vivo and in vitro studies of RBC aggregation have been conducted. Most in vitro experiments
have been performed using a rotational viscometer [5, 6] and have shown an inverse relation-
ship between the relative viscosity and shear rate at a low shear rate. In vivo experiments have
also revealed such a relationship [7], even though in vitro studies using a vertical capillary tube
showed viscosity to be independent of shear rate, as a result of the axial migration of RBCs and
their aggregates and the formation of a cell-free or cell-depleted layer adjacent to the tube wall
[8]. Because of the occurrence of frequent vascular junctions in vivo, a cell-free layer does not
develop until the pseudo shear rate (mean velocity divided by diameter) falls below 5 s−1 [9].
Bishop et al. [10] have also reported bluntness of the velocity profile as a result of RBC
aggregation at a low shear rate. Thus, velocity distribution in microvessels is shear-dependent,
and the inverse relationship between RBC aggregation and shear rate causes the increase in vascu-
lar resistance. In order to elucidate the specific mechanisms responsible for diseases related to RBC
aggregation, we need to better understand how RBC aggregation depends on vascular geometries,
flow distribution and macromolecular composition of the blood plasma.

Two models of interaction energy have been proposed to account for RBC aggregation: bridging
and depletion interaction. Chien and Jan proposed that macromolecules, such as fibrinogen, attach
to the RBC surfaces (glycocalyx) and bridge them [11]; this theory is referred to as the bridging
interaction model. The depletion interaction model for RBC aggregation has been introduced and
formulated by Neu and Meiselman [12]. They proposed that as RBCs in a polymer solution
approach each other, a depletion layer develops between the cells due to an imbalance between
adsorption energy and the loss of entropy of the polymer and, as a result, the difference in osmotic
pressure between the depletion zone and the bulk phase leads to displacement of the solvent into
the bulk phase, minimizing the polymer-reduced space between cells. In the present study, we
have used the depletion interaction model, as extended to describe interactions between non-planar
surfaces.

The RBC is a biconcave disk of about 6–8 �m diameter and 2 �m thickness. It contains
haemoglobin solution, with a viscosity about five times higher (6 cPs) than that of the surrounding
plasma (1.2 cPs). The haemoglobin solution is enveloped by a flexible membrane, which is com-
posed of a lipid bilayer and its associated proteins and an underlying cytoskeleton (spectrin, actin
and other proteins). The proteins determine the structural integrity of the RBC. The deformability
of the RBC has been studied by modelling the characteristics of the membrane based on continuum
theory. A Neo-Hookean nonlinear model and Evans and Skalak model [13] have been used in
previous studies [14, 15].

Various computational methods have been used to simulate the flow of discrete particles. These
methods include the boundary integral method applied to the three-dimensional motion of a liquid
capsule enclosed by a membrane [16], and the immersed boundary method (IB) combined with
a finite element method (FEM) for the membrane to simulate large deformations of an RBC
in a simple shear flow [14]. The IB method was also used to simulate RBC aggregation in a
shear flow in two dimensions [17]. The IB method was further extended by an immersed FEM
(IFEM) using a Lagrangian finite element solid mesh moving on top of an Eulerian finite element
mesh, with higher accuracy enabling the fluid domain to have non-uniform meshes with arbitrary
geometries and boundary conditions [18]. Other computational approaches that have been used to
solve solid/fluid interaction problems are an extended FEM (X-FEM) using an analytic solution
near a particle (enrichment scheme) [19] and a lattice Boltzmann method (LBM) originating
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from lattice gas (LG) automata. The LBM method was applied to describe leucocytes rolling in
postcapillary expansions and the interactions with RBCs [20]. Subsequently, the LBM was applied
to simulate RBC flows in microvessels to reproduce Fahraeus–Lindqvist and Fahraeus effects [21];
the calculations were two-dimensional, with RBCs represented as solid rectangles and leucocytes
as solid circles.

In 1985, Dougherty developed a Chimera grid scheme [22], which has been generally applied
to aerodynamic flows. This scheme uses separate fluid and particle grids for particle flows, and
it is advantageous for simulations of flows in complex geometries. Generally, the Chimera grid
method (i) provides easier mesh generation to build complex geometries, such as bifurcations for
fluid domains and spheroidal particles for particle grids; (ii) prevents severe mesh distortion due
to motions of particles in fluid domain that do not require mesh upgrade algorithms; and (iii)
has capability to simulate the motions of flexible geometries via an arbitrary Lagrangian–Eulerian
formulation (ALE) [23]. The method has been applied to describe the motion of a sphere at
a low-to-intermediate range of Re= 0.1–100 [24] and the motion of an array of spheres [25].

In the present study, we have applied the Chimera grid scheme to simulate the motion and
aggregation of RBCs in a cylindrical tube, based on the depletion interaction model [12]. RBCs
are modelled as solid ellipsoidal particles with eccentricity ratio e= 0.5 (oblate spheroid), and
a steady Poiseuille flow condition is assumed at the inlet of the tube. Since ellipsoidal particles
have not been simulated in a low Re regime using this method, and Chimera method has not been
applied to the simulation of RBC aggregation previously, our objectives in this study are (i) to
construct an algorithm to simulate the flow of particles at a low Re using the Chimera grid method,
(ii) to apply the method to simulate the motion of two solid particles in a straight narrow tube
without and with aggregation based on the depletion interaction model, and (iii) to demonstrate its
feasibility for computing the motion of multiple ellipsoidal particles. The method has the potential
to be further extended to deformable particles with properties similar to RBCs.

Mathematical and numerical models based on Chimera grid method are presented in
Sections 2.1–2.5. We validate the Chimera grid method by solving flow past a quiescent par-
ticle with both uniform and parabolic flows in Section 2.6 and comparing the results to known
experimental data and theoretical solutions. Results for two RBCs with and without aggregation
in a narrow tube are presented in Section 3.

2. METHODS

2.1. Chimera grid generation and interpolation between grids

We consider two computational domains to solve the flow past a spherical or ellipsoidal particle in
a straight cylindrical tube. The computational domains represent the flow in the tube and the flow
near the particle (Figure 1). We define the cylindrical domain to be the ‘major grid’ representing
the fluid in the tube and spherical or ellipsoidal domain, and the ‘minor grid’, placed over the
major grid, representing the fluid near the particle. The minor grid includes the sphere or ellipsoid.
These two independent grids can communicate through nonconservative trilinear interpolation at
the boundary of each grid. The figure also shows ‘fringe points’ (solid circles) that surround the
particle in the major grid. Fringe points of the minor grid are marked as open circles. Pressure and
velocity are interpolated at these fringe points. The governing equations described below are not
solved at the points of the major grid that fall inside the particle in the present study; the method
is expandable to deformable particles, in which case the internal points will be used.
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Figure 1. Fringe points of major and minor grids.

Figure 2. Fringe points of major and minor grids when two particles are close together.

When two or more particles are immersed in the fluid, fringe points between minor grids that
represent the two particles must also be considered. Figure 2 shows the fringe points when two
particles are close to each other. The fringe points of two minor grids marked by open circles are
the points of interpolation between major and minor grids. Interpolation between the two minor
grids is performed through the fringe points marked by open and solid squares (open for the left
particle, solid for the right particle). The points of each particle completely envelop the surface of

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:105–128
DOI: 10.1002/fld



SIMULATION OF CELL MOTION AND AGGREGATION IN A NARROW TUBE 109

the other particle. The fringe points of the major grid are the points that surround the particles.
Further details of the grid generation and interpolation method are presented in Appendix A.

2.2. Governing equations

Blood as a suspension exhibits non-Newtonian behaviour at low shear rates, primarily due to RBC
aggregation. However, the blood plasma is a Newtonian fluid, thus the equations governing the
flow around RBCs can be written in the integral form as∫

v · n dA= 0 (1)

∫
�

�v
�t

dV +
∫

�(v · ∇)v dV = −
∫

pn dA +
∫
s · n dA (2)

where v, p, �, and s are the velocity, pressure, density of the fluid and stress tensor, respectively.
The stress tensor is given by

s= �(∇v + ∇vT) (3)

where � is the viscosity of the fluid.
RBCs experience a drag force due to the flow and an interaction force between the two cells

when they are close to each other. By ignoring body force, the equation of motion for the parti-
cle is

m
dvc
dt

=FD + FA (4)

where m and vc are the mass and translational velocity of the RBC, respectively, the drag force
FD exerted by the fluid on the particle is in the form

FD = −
∫

pn dA +
∫
s · n dA (5)

and FA is the interaction force based on the depletion interaction model [12]. The moment of
momentum equation for the particle is

I
dx

dt
+ x× I · x=TD + TA (6)

where I and x are the moment of inertia and angular velocity of the cell, respectively, and TA is
the torque due to the interaction force FA, and the torque TD exerted by the fluid on the particle
is in the form

TD = −
∫

rc × pn dA +
∫

rc × s · n dA (7)

where rc is the position vector from the centre of mass and the surface of the cell. Appendix B
describes the depletion interaction model of Neu and Meiselman [12] and its application to particles
of arbitrary shape [26]; the derivations of the interaction force FA and torque TA based on the
depletion interaction model are also described.
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2.3. Boundary conditions

For the simulation of motion of two RBCs with and without aggregation in a narrow tube, no-slip
conditions at the tube wall, �w, and a fully developed flow condition at the inlet, �i, are specified

v|�w = 0 (8)

v|�i = vmax

(
1 − r2

R2

)
(9)

where vmax, r and R represent the maximum fluid velocity at the inlet, radial position and radius
of the tube, respectively. At the outlet of tube, �o, we specify the zero axial velocity gradient

�v
�z

∣∣∣∣
�o

= 0 (10)

where z is the axial position in the tube.
The boundary condition at the surface of the RBC, �c, is specified using the cell’s translational

and rotational velocities

v|�c = (vc + x× rc)|�c (11)

2.4. Numerical methods

The governing equations are discretized based on the body-fitted coordinates explained in
Appendix A and solved by Chorin’s pressure correction method [27]. Details of the solution
method are described in Appendix C. The translational and angular velocities of each cell are
determined by the resultant force and torque in Equations (B17) and (B18) through Newton’s law
in Equations (4) and (6). Numerically, we discretize these two equations based on the implicit
scheme. However, because of the very small inertia of RBCs at a low Re, excessive computational
time is required to simulate particle motion because a very small time step is required to obtain
the acceleration of the particle. Hence, we formulated an algorithm to compute a small force and
torque on a particle using a larger time step. We discretize Equation (4) based on the implicit
method with intermediate time. The current particle translational velocities are obtained by

vn+1,m+1
c = vn+1,m

c + �t ′

m

F(vn+1,m+1, pn+1,m+1) + F(vn, pn)
2

(12)

where the superscripts n and n+1 stand for old and new time, m and m+1 stand for the previous
and current iterations, respectively, and �t ′ is a time step whose value can be arbitrarily chosen.
Therefore, the translational velocities at the current iteration, m + 1, are updated using velocities
obtained at the previous iteration, m, and the average value of the forces obtained at the old time,
n, and the current m + 1 iteration. The value of �t ′ can be chosen to be small enough to yield
correct velocities at the current iteration, m+1. Likewise, Equation (6) is solved by a fourth-order
Runge–Kutta method to obtain the current xm+1 using the previous xm , �t ′ and the average value
of torques obtained at the old time, n, and the current m + 1 iteration. This algorithm calculates
the particle acceleration at each iteration and then yields a particle velocity within the actual time
step �t , ultimately resulting in a zero resultant force and torque at a given time. Employing this
algorithm allows us to obtain the motion of a particle for a reasonable time interval by using
a larger time step.
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Figure 3. Flowchart of overall iterative steps for numerical solution.

Navier–Stokes equations and equations for the motion of cells, with all the algorithms, including
the depletion interaction between cells as described in Appendices B and C, are solved based on
the following overall iterative steps, as illustrated in the flowchart in Figure 3:

(1) Generate geometries and identify fringe points and holes in each grid for interpolation.
(2) Guess the old velocity vn , pressure pn and cell velocity vnc .
(3) Solve Navier–Stokes equations using the following steps:

(i) Solve the vortical velocity v′ using Equation (C3).
(ii) Solve Equation (C5) to obtain the velocity potential � using the vortical velocity and

the Poisson equation Equation (C6) to obtain the irrotational velocity vo.
(iii) Solve Equation (C4).
(iv) Make velocity and pressure corrections using Equations (C1) and (C2).

(4) Interpolate the solution to fringe points of other grids, and repeat steps 3–4 for all of the
grids.

(5) Find intercellular distances between the surface elements of the cells, and evaluate the
attractive force and torque using the distances as described in Appendix B and drag force
and torque due to the flow.

(6) Using the resultant force and torque on cells, determine the positions of the cells.
(7) Identify the holes and fringe points of all the major and minor grids.
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(8) Evaluate the error norm of the velocity and pressure for each grid, which is defined by

E = |( )m+1 − ( )m |
( )m

(13)

where ( )m+1 and ( )m are the velocity or pressure at the current and previous iterations,
respectively.

(9) Repeat steps 3–8 until the maximum norm Emax over the entire grid is less than 0.001.
(10) The velocity, pressure for all of the grid points and cell velocity obtained by the above

steps are used as the old velocity vn , pressure pn and cell velocity vc and go back to
step 3 and repeat steps 3–9 for next time.

All simulations were carried out on a 3.20 GHz Pentium 4 PC; a typical simulation with two
cells takes approximately 30 h.

2.5. Assumption for the elimination of particle overlap

Numerically, it is possible that two solid domains (Figure 2) representing particles may overlap
as the two particles approach each other. In order to prevent the overlap, we use an electrostatic
repulsive energy described in Equations (B5) and (B6) to simulate the motions of two RBCs. As
shown in Figure 10(a), the interaction energy gradually becomes zero and changes its sign as a result
of the repulsive energy when the intercellular distance h between RBCs approaches approximately
twice the thickness of the RBC glycocalyx, depending on the type of polymer present in the
plasma and on the polymer concentration. Therefore, when the minimum intercellular distance
hmin between the surfaces of the two particles with arbitrary shapes is within the range in which
the electrostatic energy dominates, the two particles repel each other, preventing the overlap. We
apply the electrostatic energy to the simulations with and without aggregation to avoid the overlap
of two RBCs.

2.6. Validation problems

As the first step in solving problems involving particulate flows, we simulate flows past a fixed
particle in unbounded and bounded fluid domains. For this purpose, we considered three validation
problems, as follows:

(1) Flow past a quiescent sphere immersed in an unbounded domain with uniform inlet flow.
(2) Flow past a quiescent sphere located in a straight tube with a parabolic inlet flow.
(3) Flow past a quiescent ellipsoid located in a straight tube with a parabolic inlet flow.

Several authors have reported empirical relationships between the drag coefficient CD and Re for
the first problem. Flow past a sphere immersed in a straight tube has been solved analytically
by a reflection method [28]. Wakiya reported the analytic solution for a spheroid immersed in a
Poiseuille flow through a tube [29]. Prior to the validation problems, a mesh refinement study was
performed using the second problem at Re= 0.1. Several empirical relationships between CD and
Re were compared to the numerical results of the first validation problem. The comparison was
made according to the range of Re. For Re>1, three empirical relationships were considered, as
follows:

CD = 24

Re
(1 + 0.197Re0.63 + 0.00026Re1.38) for 1<Re<100 (14)
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CD = 24

Re
(1 + 0.125Re0.72) for Re<1000 (15)

CD = 24

Re
(1 + 0.15Re0.687) for Re<800 (16)

These relationships were reported by Langmuir and Blodgett (Equation (14)), Lapple (Equation
(15)) and Schiller and Nauman (Equation (16)), respectively [30]. For Re<1, the following em-
pirical relationships were considered:

CD = 24

Re
(1 + 0.1315Re0.82–0.05 log(Re)) for 0.01<Re<20 (17)

CD = 0.28 + 6

Re0.5
+ 21

Re
for 0.1<Re<4000 (18)

CD = 0.48 + 28Re−0.85 for 0.2<Re<2000 (19)

CD = 24

Re
for Re= 0 (20)

reported by Beard (Equation (17)), Kurten et al. (Equation (18)), Gilbert et al. (Equation (19)) and
Stokes law (Equation (20)) [30].

2.6.1. Mesh refinement study. Mesh refinement study was performed at a fixed Re= 0.1 to obtain
appropriate mesh densities for the problem of cell motion in the tube flow. The major grid
represents a tube with a diameter larger than the cell diameter (ratio of Dcell to Dtube = 0.25),
which represents a finite domain for this study, and the minor grid represents a sphere. A no-slip
boundary condition is applied at the tube wall �w. I , J , K indices stand for the total mesh densities
in the �, �, � directions. The mesh was refined by increasing the values of I , J , K so that nine cases
were considered. The mesh was then further refined in the region near the sphere, as shown in
Figure 4. Table I shows the values of I , J , K for both the major and minor grids for nine different

Figure 4. Mesh densities of major and minor grids.
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Table I. Mesh densities of major and minor grids.

1 2 3 4 5 6 7 8 9
Major Major Major Major Major Major Major Major Major

Case Minor Minor Minor Minor Minor Minor Minor Minor Minor

I 12 15 16 17 18 19 20 21 22
12 15 16 17 18 19 20 21 22

J 12 15 16 17 18 19 20 21 22
12 15 16 17 18 19 20 21 22

K 17 17 18 18 18 20 20 21 22
12 15 16 17 18 19 20 21 22

Table II. Drag forces obtained in mesh refinement study.

Case 1 2 3 4 5 6 7 8 9

FD 0.952 0.910 0.865 0.866 0.872 0.900 0.924 0.92 0.917

Figure 5. (a) A representative figure of the convergence of the drag force for Re= 0.1; and (b) a convergence
curve of the error norm E of pressure and velocity for Re= 0.1.

cases. Case 1 is the coarsest, and Case 9 is the finest mesh case. As seen in Table II, the rate of
change in drag force, FD, between Cases 8 and 9 was within 0.5% so that Case 8 could be used
for the rest of computations in this study. Shown in Figure 5(a) is the representative convergence
of drag force, FD, for Case 8. Figure 5(b) represents a convergence curve of the error norm of
pressure and velocity defined in Equation (13) for the same case.

2.6.2. Example 1. Flow past a sphere in an unbounded domain was solved for Re= 0.5, 1, 10,
30 and 50. Uniform velocity was specified at the inlet. The boundary conditions, Equations (8)
and (10), were used with zero velocity of the sphere in Equation (11). Based on the mesh density
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Figure 6. Percent error for the comparison of computed CD and empirical CD for a sphere in an unbounded
domain; the open square, triangle, diamond and circle represent comparisons with Beard (Equation (17)),
Kurten et al. (Equation (18)), Gilbert et al. (Equation (19)) and Stokes law (Equation (20)), respectively.
The solid square, triangle and diamond represent comparisons with Langmuir and Blodgett (Equation (14)),

Lapple and Schiller (Equation (15)) and Nauman (Equation (16)), respectively.

case, Case 8, we compared the computed CD to the empirical CD according to the range of Re.
Percent error, which is defined by

% error= 100
Ccomputed
D − Cempirical

D

Cempirical
D

(21)

were evaluated for all of the Re considered (Figure 6). The lowest errors for all of the Re considered
were within 1%. Note that in all cases the computed CD is larger than the empirical value, most
likely reflecting the effect of the finite domain size, since the domain diameter is only four times
the particle diameter.

2.6.3. Example 2. Flow past a quiescent sphere placed in a straight cylindrical tube was solved
at Re= 0.1. First, the sphere was located at the centreline of the tube. Second, the sphere was
located away from the centreline of the tube at b/R = 0.3, where R is the radius of cylinder and
b is the distance from the centreline. Parabolic flow, Equation (9), was specified at the inlet �i of
the tube. Other boundary conditions were Equations (8) and (10) with zero velocity of the sphere.
Happel and Brenner [28] have reported analytic solutions for drag force and torque acting on a
sphere in a fluid flow using the reflection method. The calculated drag force and torque acting on
the surface of the sphere in the tube were compared with the analytic solutions.

The solutions using the reflection method are FD = 0.876 and T = 0.01525 at Re= 0.1 in the
second case. From our simulation, the drag force and torque calculated were FD = 0.8763 and
T = 0.01567, so that the discrepancies between them were within 2.7% for both the drag force
and torque. In the first case when the sphere is at the centre, b= 0, the value of FD based on
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Haberman’s exact theory [28] is 0.91 at Re= 0.1, and our calculated drag force FD was 0.92, so
that the discrepancy between them was less than 1%.

2.6.4. Example 3. Flow past an ellipsoid with an eccentricity ratio e= 0.5 (prolate spheroid)
placed in a straight tube was simulated at Re= 0.1. The ellipsoid was placed at the centreline
of the tube, its longest axis coinciding with the tube axis. The ratio of the longest semiaxes of
the ellipsoid to the tube radius was 0.25. Parabolic flow, Equation (9), was imposed at the inlet
of the tube. Equations (8) and (10) with zero velocity of the ellipsoid were specified at the other
boundaries of the tube. Drag force acting on the ellipsoid immersed in a Poiseuille flow through
the pipe at Re= 0.1 was 0.404, based on the analytic solution in Reference [29]. Our computation
showed that drag force was 0.417, so that the discrepancy was 3%.

3. RESULTS FOR TWO CELLS

In this study, we modelled the shape of the RBC as a solid ellipsoidal particle. The eccentricity of
the ellipsoid was fixed at 0.5 in all our simulations. The density of the cell was the same as that of
plasma. The motion of two cells in Poiseuille flow in a tube was simulated. The first computation
was performed for the case in which the aggregability of the RBCs was negligible, so that the
attractive force between two cells is not considered. The second simulation was the motion of two
cells forming an aggregate. The governing equations with the boundary conditions discussed in
the earlier sections were solved at a fixed Re= 0.1.

Note that for a microvessel with 20 �m diameter, the average plasma velocity is 0.5 cm/s at
Re= 0.1. The dimensions for the model are similar to those found in postcapillary venules where
aggregates first form in vivo [31]. From our dimensional analysis based on the vessel dimension
and plasma properties, the relationship between the computed and actual values (MK S units) are
found by

tact = 10−4tcom, vact = 10−1vcom, Lact = 10−5Lcom

pact = 10pcom, Fact = 10−9Fcom
(22)

where ( )act and ( )com are the actual and computed values, respectively. L represents the length.

3.1. Non-aggregating cells

Three cases were considered for different initial positions of two cells. In the first case, two cells
were located symmetrically in the upstream region of the tube (Figure 7(a)). As time elapses,
the two cells move downstream in the tube due to the flow, with a slight rotation because of the
difference in velocity between the sides of the ellipsoid, as shown in the figure. The next case
was the computation of the motion of one cell A, which was initially located at the centreline
of upstream of the tube, and cell B, whose initial position was off the centreline of the tube at
b/R = 0.3 downstream from cell A. Figure 7(b) shows the trajectories of the two cells. Cell A
moves faster than cell B because of the parabolic velocity profile of the fluid. Furthermore, cell
B rotates with the flow and cell A does not rotate much. Because of the differences in the cell
velocities, cell A catches up with cell B as time progresses. Note that the velocity of a particle is
always less than the fluid velocity at the location of the centre of mass of the particle. For the third
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Figure 7. Trajectories of non-aggregating cells: (a) Case 1; (b) Case 2; and (c) Case 3.

Figure 8. Initial positions of the two cells in Case 3.

Figure 9. Velocity profiles for non-aggregating cells: (a) Case 1 at t = 28.0;
(b) Case 2 at t = 15.2; and (c) Case 3 at t = 18.4.

simulation, two cells were located symmetrically upstream, but one cell, A, was tilted 45◦ with
respect to the y and z axes of a rectangular coordinate system, and the other cell, B, was tilted
45◦ with respect to the y-axis only as shown in Figure 8. Since the two particles were initially
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Figure 10. (a) Interaction energy vs. intercellular distance for DEX 500; and (b) interaction
force vs. intercellular distance for DEX 500.

positioned near the centreline, where shear force is almost negligible, the cells move downstream
without noticeable rotation (Figure 7(c)). Figure 9 shows the velocity profiles at different times
for the three cases.

3.2. Aggregating cells

Based on the interaction energy, which accounts for both the depletion and electrostatic energies
described in Appendix B, the attractive force depending on the type of polymer and its concen-
tration, Cp, Equation (B13) was obtained. Figure 10(a) represents the interaction energies for
Dextran 500 with Cp = 1, 1.5, 2.5 and 4 g/dl with respect to intercellular distance, h. In this case
the penetration constant, Cb, was fixed at 1g/dl. As the concentration Cp increases, the interaction
energy increases, and the size of the region in which interaction occurs decreases. The attractive
forces corresponding to the energy curves shown in Figure 10(a) are plotted in Figure 10(b). As
expected, the force is reduced as Cp decreases. However unlike the energy curves, the attractive
forces do not vary significantly across the region in which the interaction energies are effective;
this is because the force is a derivative of energy with respect to distance, and the energy tail is a
linear function of distance according to Reference [12].

Figure 10(a) shows that cell–cell interactions due to the depletion energy occur at the separation
distances in the range of approximately 12–30 nm. However, our grid size, even near the cell,
was significantly larger (∼1 �m). This grid size can be reduced if necessary and is, theoretically,
limited only by the computer hardware used; however, there is a practical limit to how far the
grid size can be reduced. For this reason, the size of the region in which the attractive energy is
effective is scaled up, keeping the value of the force the same. In this study, the scaling factor was
fixed at 50 such that the glycocalyx thickness of the RBC was considered to be about one-tenth
the height of the cell (0.25 �m). Therefore, the intercellular distance for our computations was
about 50 times larger than the actual intercellular distance (Figure 11).

Three cases for the trajectories of two RBCs undergoing aggregation in a narrow straight tube
were investigated, reflecting different initial positions of the RBCs. The polymer, Dextran 500
was used at a concentration, Cp = 1.5 g/dl. The levels of Dextran 500 used are relevant to
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Figure 11. Interaction energy scaled up by a scaling factor of 50.

Figure 12. Trajectories of aggregating cells: (a) Case 1; (b) Case 2; and (c) Case 3.

in vivo studies. Bishop et al. [10, 32] and Kim et al. [31] used concentration of 0.6 g/dl,
which produces a level of aggregability similar to that seen in normal humans, while Durussel
et al. [33] and Mchedlishvili et al. [34] used concentrations of 4.1 and 4.8 g/dl which would
elevate aggregability to a level equal to or greater than that seen in human disease states. The
computation was performed for two cells that were initially positioned in the upstream region of
the tube. The first case was simulated for the two cells initially tilted 45◦ with respect to the y-axis
and facing each other at the centreline of the tube (Figure 12(a)). Because of attractive depletion
forces, the two cells approach each other, moving downstream with time as shown in the figure.
The cells initially rotate in the direction of the attractive force. When the cells approach more
closely, repulsive forces come into effect.
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Figure 13. Cell trajectory in Case 3.

Figure 14. Velocity profiles for aggregating cells: (a) Case 1 at t = 19.2;
(b) Case 2 at t = 13.6; and (c) Case 3 at t = 18.4.

As a second case, we computed the motion of one cell A, which was initially positioned at the
centreline in the upstream region of the tube, and cell B, which was off the centreline at b/R = 0.25,
downstream from cell A (Figure 12(b)). As in the case of the non-aggregating cells, cell A moves
faster than cell B and catches up with cell B. However, unlike the case for non-aggregating cells,
the aggregating force between the cells increases the speed of cell A and decreases the speed of
cell B. As a result, cell A catches up with cell B faster than in the case of non-aggregating cells
and moves toward cell B, moving slightly off the centreline of the tube.

A third case considered the same initial positioning of two cells as in the third case for non-
aggregating cells (Figure 8). As we observed for the first case, the cells approach each other
because of the attractive force and move downstream in an equilibrium position (Figure 12(c)).
Figure 13 shows that due to attractive and repulsive forces cells A and B rotate with respect to
both the y and z axes, finally attaining an equilibrium position with their flat surfaces facing each
other. Velocity profiles for aggregating cells at several times are shown in Figure 14.

4. SUMMARY AND DISCUSSION

Because of the physiological and clinical significance of RBC aggregation in the microcirculation,
there is a need for detailed numerical studies of RBC aggregation at the cellular level, as a mean
of elucidating the relevant biophysical mechanisms in physiological and pathological states. In this
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study, we have used a Chimera grid method to investigate the 3-D motion and aggregation of two
RBCs modelled as rigid ellipsoidal particles in a straight narrow tube. The method was validated
for fully developed flow past a sphere and an ellipsoid in a tube. The aggregation force between
RBCs was derived based on the depletion interaction model [12], extended to cells of arbitrary
shape using the surface element integration [26].

The algorithm proposed in Section 2.4 is able to simulate the motion of a particle at low Re
using a realistically large time step. Using the algorithm, we have described the motion of two
ellipsoidal particles representing RBCs immersed in a Poiseuille flow in a straight narrow tube.
The other novelty of this study is that the aggregation of two particles was simulated based on the
depletion interaction model.

The computational limitation in dealing with the actual range in which the interaction energy
between the cells acts depends on the grid size. Using the grid sizes we employed, we scaled up
the depletion interaction distances by a factor of 50, retaining the magnitude of the force. As a
result, the two cells never approaches closer than a distance of hmin = 500 nm. The scaling factor
was chosen so that the computational minimum intercellular distance hmin can be at least greater
than the step size of the major grid within the region between two cells. Introducing the finer mesh
of the major grid within the region between two cells could give us a computational intercellular
distance that more closely approaches the physical intercellular distance.

The Chimera grid method allows us to deal with more complex geometries than merely a
straight tube, including bifurcating vessels and more than two particles, by adding more minor grids
representing RBCs. These modifications should enable us to compute the motion and aggregation
of multiple RBCs in arterioles and venules. In the present study, the RBC is modelled as a rigid
ellipsoidal particle. However, the RBC is in fact deformable, and its membrane properties can
be described by the Neo-Hookean nonlinear model or the Evans and Skalak model. The method
introduced in this study can be extended to describe the motion and aggregation of multiple
deformable RBCs using an approach involving the arbitrary Lagrangian–Eulerian method (ALE),
introduced by Hu [23].

APPENDIX A: GRID GENERATION AND INTERPOLATION METHOD

In order to construct three-dimensional computational domains, a generalized coordinate system
(�, �, �) for the body-fitted grids is introduced based on Cartesian coordinates (x, y, z). As will
be discussed later, the governing equations are discretized based on the generalized coordinates
through the coordinate transformation. The generation of grids that represent a sphere or an ellipsoid
in a straight tube is made using various types of control volumes, which include four-, five- and
six-sided cells (Figure A1). A tube is composed of five-sided cells at the centreline and six-sided
cells elsewhere (see also Figure A1). A sphere or ellipsoid is constructed with four- and five-sided
cells at the centre point and six-sided cells elsewhere.

The communication between grids is achieved by trilinear interpolation at the fringe points.
Searching the fringe points is accomplished by dividing the cell, which contains fringe points,
into a number of tetrahedra. Therefore, a fringe point may fall into a tetrahedron of the cell, as
shown in Figure A2. The known variables, gi (xi , yi , zi ) (i = 1, 2, 3, 4), at the four vertices of the
tetrahedron are used for interpolation (see also Figure A2). The unknown variable g(x ′, y′, z′) for
the given fringe point coordinates are then found by

g(x ′, y′, z′) = a1 + a2x
′ + a3y

′ + a4z
′ (A1)
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Figure A1. Computational elements for a tube and a spheroid.

Figure A2. Four tetrahedra divided into a six-sided cell for interpolation.

where ai (i = 1, 2, 3, 4) are the coefficients, which are found by Cramer’s rule using the four
known variables, gi , and the coordinates of its corresponding four vertices (xi , yi , zi ). A detailed
explanation can be found in Reference [35].

APPENDIX B: FORCE AND TORQUE ON RBC DUE TO DEPLETION
INTERACTION ENERGY

The depletion interaction model described in Reference [12] is used to account for RBC aggregation.
According to the model, the total interaction energy per unit surface between two infinite plane
surfaces representing RBC surfaces brought into close contact by the use of polymers such as
dextran (DEX) or poly ethylene glycol (PEG) is the sum of the depletion attractive and electrostatic
repulsive energies, with negligible van der Waals interactions

WT =WD + WE (B1)
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where WD,WE are the depletion interaction and electrostatic energies per unit surface, respectively.
The depletion energy is in the form

WD = − 2�

(
� − d

2
+ � − P

)
when

(
d

2
− � + P

)
<� (B2)

WD = 0 when

(
d

2
− � + P

)
>� (B3)

where �, �, d, � and P are the osmotic pressure term, depletion thickness, intercellular distance,
RBC glycocalyx thickness (5 nm) and penetration depth, respectively. The osmotic pressure term,
�, and the depletion thickness, �, are functions of the molecular weight of the polymer and of the
polymer concentration, Cp. The penetration depth, P , is a function of the polymer concentration,
according to

P = �(1 − e−Cp/Cb) (B4)

whereCb is the penetration constant of the polymer in solution. The electrostatic energy is expressed
in the form

WE = �2

�2		ok3
sinh(k�)(ek�−kd − e−kd) when d�2� (B5)

WE = �2

�2		ok3
(2k� − kd) − (e−k� + 1) sinh(k� − kd) − sinh(k�)e−kd when d<2� (B6)

where �, 	, 	o, and k are the surface charge density of RBC, the relative permittivity of the solvent,
the permittivity of the vacuum, and the Debye–Huckel length, respectively. The above formula-
tion predicts an optimal polymer concentration for the interaction energy. The interaction energy
increases, reaches a maximum and then decreases as the concentration increases. Furthermore, the
interaction energy gradually increases to reach a maximum and then decreases to zero as the two
surfaces approach. When the surfaces approach a distance equal to the sum of their glycocalyx
thicknesses, they experience a strong repulsive force (Figure 10).

We now extend this formulation to surfaces of arbitrary shape using Derjaguin’s integral
approximation. Bhattacharjee et al. [26] have used Derjaguin’ formula to express the intercel-
lular interaction energy between two curved surfaces using the surface element integration:

U≈
∫
S1

(n1 · k1)(n2 · k2)W (h) dS1 (B7)

where n1 and n2 are the outward unit normal vectors of the surface elements of particles 1 and 2,
respectively (Figure B1), and S1 is the surface of particle 1. Here, h is the local distance between
the two surface elements, k1 and k2 are the unit normal vectors of two parallel planes with
the direction parallel to a line L , which connects the centres of two particles (Figure B1); thus
k1 = − k2. Note that this theory assumes that an interaction occurs between two pairwise surface
elements facing each other, and the particle with the smaller size of surface that faces the other
particle is used for the integration domain. In the case of equal surfaces, either particle can be used
for integration. Therefore, the surface of particle 1 is the integration domain in Equation (B7).
Equation (B7) is used to obtain the interaction energy between two ellipsoidal RBCs in this study.
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Figure B1. Surface elements of Cells 1 and 2.

The integration of Equation (B7) based on the surface element integration is over the entire
surface of particle 1. However, we use only the surface of particle 1 that faces particle 2 for the
integration, since only the volume elements between the RBC surfaces in close contact contribute
to the interaction energy, based on the depletion interaction model. The vector forms of the surface
elements dS1, dS2 of cells 1 and 2 are obtained by

dS1 = n1 dS1, dS2 =n2 dS2 (B8)

respectively. In order to find two pairwise surface elements of cells 1 and 2, we identify the surface
elements facing each other; for example, for cell 1, the elements facing each other are identified
when the dot products of the surface elements of cell 1 and k1 are larger than zero. The conditions
for identifying the surface elements of cells 1 and 2 facing each other are therefore

dS1 · k1>0, dS2 · k2>0 (B9)

The term (n1 · k1) dS1 of Equation (B7) is the projected surface element on the plane of k1. We
define the projected surface element dQ1 and its vector dQ1 of the surface element dS1 identified
by Equation (B9) on the plane of k1 as

dQ1 = dS1 · k1, dQ1 = (dS1 · k1)k1 (B10)

Likewise, for cell 2, we define

dQ2 = dS2 · k2, dQ2 = (dS2 · k2)k2 (B11)

The distance h and its vector h, which is parallel to L in Figure B1, is the distance between a
surface element dS1 of cell 1 and the corresponding pairwise surface element dS2 of cell 2. The
total interaction energy in Equation (B7) can then be written as

U =
∫
S1

(n1 · k1)(n2 · k2)W (h) dS1 =
∫
Q1

(n2 · k2)W (h) dQ1 (B12)

where n2 is the direction vector of the pairwise surface element dS2 corresponding to dS1 of cell 1.
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The force corresponding to the interaction energy for cell 1 can be expressed as

FA
1 = − �U

�h
= −

∫
Q1

(n2 · k2)�W (h)

�h
dQ1 (B13)

The torque generated by the interaction energy for cell 1 can now be found by

TA
1 = −

∫
Q1

rc1 × (n2 · k2)�W (h)

�h
dQ1 (B14)

where rc1 is the distance vector from the centre of cell 1 to dQ1, and TA is the torque due to the
attractive force on cell 1. The force and torque of cell 2 due to the interaction energy are then
opposite in direction and the same in magnitude, so that

FA
2 = − FA

1 (B15)

TA
2 = − TA

1 (B16)

RBCs in plasma experience both fluid and interaction forces between the cells. Therefore the
resultant force acting on cell i (i = 1 or 2) can be written in the form

Fi =FD
i + FA

i (B17)

where FD
i is the mechanical force due to the flow acting on cell i . Likewise, the resultant torque

acting on cell i is the sum of the torques due to the flow and attractive force, such that

Ti =TD
i + TA

i (B18)

APPENDIX C: DISCRETIZATION AND SOLUTION METHOD

Equations (1)–(3) are solved by Chorin’s pressure correction method [27]. The method divides the
velocity field into vortical and irrotational components

vn+1 = v′ + vo (C1)

The vortical velocity, v′, is due to the viscous effects, and the irrotational velocity, vo, is a result
of temporal changes in the dynamic pressure 


pn+1 = pn + 
 (C2)

Thus, Equation (2) is divided into two steps for solving the vortical velocity field with the old
pressure field (Step I) and the irrotational velocity field (Step II), as∫

�
v′ − vn

�t
dV +

∫
�(v′ · ∇)v′ dV = −

∫
pnn dA +

∫
s(v′) · n dA (C3)

∫
�
vn+1 − v′

�t
dV = −

∫

n dA (C4)
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where the superscript n denotes the values at t = tn and n+1, the values at t = tn+1; �t = tn+1−tn .
These momentum equations coupled with continuity equation at tn+1, yield∫

∇� · n dA=
∫

�v′ · n dA (C5)

by expressing the irrotational velocity vo in terms of the gradient of a potential

vo = − ∇�

�
(C6)

The pressure correction term, 
, is related to the velocity potential � by


 = �

�t
(C7)

which can be obtained using Equations (C1) and (C4).
Discretization of the equations is performed based on the generalized coordinates (�, �, �). For

instance, consider the convective term in the momentum equation, which has three components of
x , y, z in the Cartesian coordinate system∫

v · ∇vi dV =
∫ (

(v · ∇�)
�vi

��
+ (v · ∇�)

�vi

��
+ (v · ∇�)

�vi

��

)
dV (C8)

The three right-hand side terms of Equation (C8) based on (�, �, �) are obtained by the chain rule

�
�xi

= �
��

��

�xi
+ �

��

��

�xi
+ �

��

��

�xi
(C9)

where xi is x , y, or z. For the volume integral as well as the surface integral based on finite volume
formulation, the first-order derivative terms are discretized by a second-order central difference
scheme. For example,

�vi

��i
= vi+1

i − vi−1
i

2��i
(C10)

where �i is �, �, or �. For the surface integral, at the surface with � direction, the first derivative
terms are discretized as follows:

�vi

��
= v

i+1, j,k
i − v

i, j,k
i

��
(C11)

�vi

��
= 1

2

(
v
i, j+1,k
i − v

i, j−1,k
i

2��
+ v

i+1, j+1,k
i − v

i+1, j−1,k
i

2��

)
(C12)

�vi

��
= 1

2

(
v
i, j,k+1
i − v

i, j,k−1
i

2��
+ v

i+1, j,k+1
i − v

i+1, j,k−1
i

2��

)
(C13)

A detailed explanation of the discretization for the other types of control volumes can be found in
Reference [35].
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The nonlinear discretized equations are then linearized by the Newton–Raphson method. The
set of linearized algebraic equations is∑

A
��v
�� = di, j,k (C14)

where


 = i − 1, i, i + 1 (C15)

� = j − 1, j, j + 1 (C16)

� = k − 1, k, k + 1 (C17)

and A
�� are the coefficients of 27 terms and di, j,k are functions of geometry and vi at t = tn . The
unknown vi in Equation (C14) are solved by a predictor corrector scheme [35].
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